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Abstract 

It is shown that, given any finite dimensional, split basic algebra A = KT/I (where r is 
a quiver and I an admissible ideal in the path algebra KT), there is a finite list of affine 
algebraic varieties, the points of which correspond in a natural fashion to the isomorphism types 
of uniserial left /t-modules, and the geometry of which faithfully reflects the constraints met 
in constructing such modules. A constructive coordinatized access to these varieties is given, 
as well as to the accompanying natural surjections from the varieties onto families of uniserial 
modules with fixed composition series. The fibres of these maps are explored, one of the results 
being a simple algorithm to resolve the isomorphism problem for uniserial modules. Moreover, 
new invariants measuring the complexity of the uniserial representation theory are derived from 
the geometric viewpoint. Finally, it is proved that each affine algebraic variety arises as a variety 
of uniserial modules over a suitable finite dimensional algebra, in a setting where the points are 
in one-one correspondence with the isomorphism classes of uniserial modules. @ 1998 Elsevier 
Science B.V. All rights reserved. 

1991 Math. Subj. Class.: 16Gl0, 16G20, 16G60. 

1. Introduction 

This is the first part of a trilogy which is to lay the foundations for a geometric 

approach to the uniserial representations of finite dimensional algebras. The need for 

a solid understanding of the full class of uniserials arose within a program aimed 

at approximating finitely generated modules by modules of a simpler structure, the 
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basic building blocks of ‘helpful’ approximations being uniserial modules (cf. [6]). Of 

course, a uniserial module viewed by itself does not hold much interest, as is the case 

for a point on a curve when considered outside the context of the curve. In classifying 

families of uniserial modules, the interest lies in the number of and interplay among 

the parameters which offer themselves for the description of these modules. 

For good focus, let us start by recording two problems which have been propagated 

by Maurice Auslander since the 1970s and have now appeared among the eleven open 

problems stated in [2, pp. 4 1 l-41 21: 

(1) Give a method for deciding when two uniserial modules over an artin algebra 

are isomorphic. 

(2) Which artin algebras of infinite representation type have only a finite number of 

pair-wise nonisomorphic uniserial modules’? 

Specializing to finite dimensional algebras over algebraically closed fields, we present 

a solution to problem 1 and supply the tools to tackle question 2 in [8]. More generally, 

our results address split basic finite dimensional algebras /i over an arbitrary field K, 

i.e., algebras of the form KT/I, where r is a quiver and I an admissible ideal in 

the path algebra KT. Given such a ‘coordinatization’ of A, we introduce irreducible 

affine algebraic varieties over K, the points of which parametrize the isomorphism 

types of uniserial n-modules, and the geometry of which reflects the constraints met 

in constructing such modules. While being a priori defined in terms of quiver and 

relations of LI, this list of varieties will turn out to be uniquely determined by the 

isomorphism type of A, up to order and birational equivalence [S]. 

There are several ‘classical’ ways of viewing representations as points of algebraic 

varieties; all of these varieties contain classes of uniserial representations as open sub- 

varieties. The most time-honored procedure is to fix a K-basis for /1, say ir,. . . , A,,,, 

and to define the variety mlOodd(/l) of d-dimensional n-modules as a closed subvariety 

of h&(K)* where the matrix in the ith slot represents module multiplication by li. 

The sets of points corresponding to the isomorphism classes of modules arise as orbits 

under the obvious GLd(K)-action (cf. [9, Sections 12.16, 12.171). It is not difficult 

to see that the d-dimensional uniserial modules with a fixed sequence of consecutive 

composition factors form an open subvariety of m/nodd(/l), which is invariant under the 

canonical G&(K)-action. However, these varieties are very large, and the information 

they contain is encoded in the GL-actions. In contrast, the ones which we will intro- 

duce and study here provide a close fit for the uniserial modules. In many cases, they 

are isomorphic to the geometric quotient of the above-mentioned uniserial subvarieties 

of Modd(,l) module the CL-action; in particular, there is then a l-l correspondence 

between points and isomorphism types. When there is not, the ‘slack’ occurring in the 

varieties turns out to be fairly harmless. 

For more detail, let us concentrate on the class of uniserial representations of length 

I+ 1 having a fixed sequence !5 = (S( 1 ), . . . , S( 1 + 1)) of simple composition factors. 

It turns out that there is a natural subdivision of this class, possibly with overlaps, so 

that each of the segments is described by an irreducible affine variety. A primary, some- 

what rougher, subdivision is in terms of ‘masts’, as follows. Clearly, for each uniserial 



B. Huisgen-Zimmrrmann/ Journul of’ Pure and Applied Alyehra 127 (1998) 39-72 41 

A-module U with sequence s of consecutive composition factors, there exists at least 

one path p of length 1 in KT such that pU # 0; necessarily p passes in order through 

the sequence (e( 1 ), . , e( I + 1)) of those vertices in r which represent the simple 

modules S(i). (Here we consider U as a KT-module in the obvious fashion.) Each 

such path will be called a mast for U, and for each mast p we will construct an affine 

variety I$ over K - not necessarily irreducible - and a canonical surjection 4 from I$ 

onto the set of isomorphism types of uniserial left /l-modules with mast p (Section 3). 

If r does not have any double arrows, there is clearly at most one path p passing 

through the sequence (e(l), . . . , e(l + 1)) of vertices, and the variety I$ parametrizes 

the full set of isomorphism classes of uniserial modules with composition sequence s. 

In case r does contain double arrows, several varieties of the form V, are needed to 

account for the uniserial modules with composition sequence s in general. In this case, 

the irreducible components of all the pertinent 5’s are combined into a family Vs of 

varieties, as discussed below. Nonetheless, the ‘packaging’ of irreducible components 

in terms of masts remains the most accessible for both proofs and computations and 

hence will play a crucial role in our work. 

Loosely speaking, the points of V, are - as in the classical approach - strings of 

coordinate vectors determining module multiplication. But the bases for the (I + l)- 

dimensional K-space underlying the representations in the image of QP used here are 

being shifted from one point of V, to the next, in a fashion that is tied to the multi- 

plication of the uniserial modules labeled by these points. While we lose the natural 

CL,+, -action coming with fMod,+i (/i) in the process, we gain, among other things, 

a particularly transparent connection between the points of I$ and the graphs of the 

uniserial modules they represent, as well as a geometric picture which cleanly shows 

how the relations in the ideal Z impinge on the interplay of the parameters of the 

uniserials. As another bonus of restricting our focus to uniserial representations, we 

can make do with a small selection of paths from KT as representative ‘multipliers’ 

and with bases for small K-subspaces of the modules considered in order to pin down 

the effect of multiplication. The main price we pay for tight fit and manageability, on 

the other hand, lies in the fact that independence of the chosen coordinate system for 

n is not at all self-evident in this setting. For instance, certain irreducible components 

of I$ may shift to a different variety V, under a change of coordinatization. However, 

if we denote by Vs the full collection of all the irreducible components of the vari- 

eties V,, where q runs through the paths of length I that pass through the sequence 

(e( 1 ), . . , e( I + 1 )), the isomorphism type of /1 uniquely determines Vs up to birational 

equivalence. In case r has no double arrows, the irreducible components in V, are 

even unique up to isomorphism. Uniqueness will be proved in a subsequent joint note 

with Bongartz [S]. It turns out that translating the varieties considered here into certain 

closed subvarieties of Modl+i (A) provides the most convenient setting for this purpose. 

To understand the emerging picture, we further require an in-depth study of inter- 

sections of the form @+,( I$) fl Qy( V,), where p and q are two paths of length I running 

through the vertices (e(l), . , e( 1 + 1)) in that order. We prove that, if X and Y are 

irreducible components of I$ and Vq, respectively, such that Q,,(X) n Q4( Y) # B, then 
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X and Y are birationally equivalent, and consequently one of them can be deleted from 

Vs as ‘a double’ without loss of information (Section 5). 

In case the path p~Kr does not start with an oriented cycle, the surjection 

QP : V, --) {isomorphism types of uniserials in n-mod with mast p} 

is a bijection; as a consequence, the points of V, serve as complete isomorphism in- 

variants for the uniserial modules with mast p in this situation. On the other hand, 3 

may fail to be bijective in the presence of certain types of oriented cycles within p. In 

Section 4, we give an algebraic characterization of the fibres of the maps $, thus pro- 

viding a general solution to the isomorphism problem. It turns out that there is a system 

of equations with the following property: on insertion of arbitrary points P and Q of 

V,, it specializes to a linear system in the remaining variables, the consistency of which 

is equivalent to ‘$(P) ZT? $(Q)‘. Th‘ is classification is quite gratifying since the 

varieties I$, as well as the pertinent systems of equations, are very accessible - they 

can be readily computed on the basis of quiver and relations for n - and the points P 

of Vp store information on the modules $(P) in an easily decodable form. We note that 

Bongartz proved in [4] that the isomorphism problem for any pair of finite dimensional 

modules can be resolved in a finite number of steps through a Gaussian elimination 

process. In contrast, our procedure, being tailored specifically for uniserial modules, 

avoids the complications involved in handling arbitrary finite dimensional modules. 

In a nutshell, Section 6 is devoted to showing that every affine variety over K 

arises as the geometric quotient, modulo the GL-action, of the open subvariety of 

NAlodl+i(n) consisting of the points representing uniserial modules with fixed sequence 

s of composition factors. In our present terminology: Given any affine variety V over 

K, the family of irreducible components of V can be realized as a Vs for a suitable 

finite dimensional algebra A = KT/I - with r acyclic - and a suitable sequence .!$ of 

simple /i-modules. We can even assume that r is without double arrows, which implies 

that the family Vs consists precisely of the irreducible components of a single variety 

Vp which is isomorphic to V on one hand, and uniquely determined up to isomorphism 

by /i on the other. Recall, moreover, that acyclicity of r entails bijectivity of the 

corresponding natural map QP as discussed above. 

2. Preliminaries 

Throughout, K will stand for an arbitrary field, and A E KT/I will be a finite 

dimensional path algebra modulo relations over K; here r is a quiver and Z is an 

admissible ideal in the path algebra KT. Our convention for the composition of paths 

p, q E KT is as in [2], namely, qp stands for ‘q after p’ whenever the concatenation is 

defined. Moreover, J will denote the Jacobson radical of A. As is well known, the ideal 

I factored out of KT is, in general, not an isomorphism invariant of A, but depends 

on the choice of a complete set el, , e, of primitive idempotents and on the choice 

of ‘arrows’ from ei to e,, that is, of elements from ejJei which give rise to a K-basis 
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for ejJeile,J2e,. Any choice of an ideal I in KT, together with an isomorphism from 

KT/I onto A, will be called a coordinatization of A. For simplicity, we will assume 

that A is equal to KT/I, unless otherwise specified, and identify the vertices of r with 

the corresponding primitive idempotents et,. , e, of A. Our A-modules will be left 

modules throughout. 

Definition 1. Given a uniserial A-module U of length 1 + 1, any path p of length 1 

in KT with pU # 0 is called a mast of U. 

Elementary observations. (1) If the quiver r has no double arrows, then each uniserial 

A-module has a unique mast. Conversely, the uniqueness of masts in all uniserial 

modules implies absence of double arrows. 

(2) Not every path in KT with nonzero image in A needs to occur as a mast of a 

uniserial module. For example, if A = M/I, where r is the quiver 

and I = (PC! - Sy), then neither fib nor 6~ is a mast of a uniserial A-module. 

(3) Of course, this concept of mast depends on a given coordinatization of A. Our 

choice of coordinates will therefore impinge on the varieties of uniserials with given 

mast, to be introduced in the next section. As a consequence, the effect of a coordinate 

change needs to be discussed (see [S]). 

Let A4 be a A-module. A top element of M is an element x EM\JM with eix = x 

for some i E { 1,. . , n}; in that case, x will also be called a top element of type e,. 

Clearly, given a uniserial A-module U of length If 1 with top element x, a path p E KT 

of length 1 is a mast of U if and only if px # 0. A useful tool in visualizing and 

communicating uniserial modules will be their labeled und layered graphs. Suppose 

that p = MI.. ‘31 where each arrow xi has starting point e(i) and endpoint e(i + 1). 

The labeled and layered graph of U with respect to a top element x and a mast p 

consists of (a) the mast p, drawn vertically with e( 1) at the top and edges labeled by 

the arrows ai, together with (b) an edge labeled w from e(i) to e(j) whenever i < j 

and o is an arrow from e(i) to e(j) such that Aocci-t . z1.x = JJ-’ U. 

For example, let r be the quiver 
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and fl = Krl(a2 , y2). That the (layered and labeled) graph of a uniserial module U 

with top element n be 

means that U has mast p = 6;~flx, that A/IX = J2 I/, and AEX = J4 U; in other words, 

fix is congruent to a nonzero scalar multiple of /~xu modulo J3CJ, and FX is a nonzero 

scalar multiple of px. Observe that these layered and labeled graphs are, in general, 

not completely determined by the isomorphism types of the modules they represent, 

but may depend on the choice of top element. For instance, if A is as above and 

U = net/(n;~fl~ + /i(/I - @) + nc), then the graphs of U relative to the top elements 

x = Zr and y = Zt - crZt are 

2 2 

respectively. Conversely, layered and labeled graphs of uniserial modules do not pin 

these modules down up to isomorphism. Indeed, if ,4 = KT, where r is the Kronecker 

quiver 

then any uniserial module uk = ,4?r/n(j - kx) for k~K\{0} has graph 

while obviously uk y U/ for k # 1. 

Finally, we will speak of subpaths of a path p E KT: A path q E KT is a right subpath 

(respectively, kft v&path) of p if there exists a path r with p = rq (respectively, 
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p = 4~). In particular, if p is a path from a vertex e( I ) to a vertex e(2), then e( 1) 

is the unique right subpath of length zero of p, and e(2) is the unique left subpath of 

length zero. A prupev right subpath of p is a right subpath which is strictly shorter 

than p. It will be convenient to communicate the statement ‘q is a right subpath of p’ 

in the form ‘P=o~’ to arrive at compact formulas. 

For the geometric terms we use, the reader should consult the introductory texts by 

Hartshorne and Mumford [7, IO]. 

3. Description of the varieties of uniserials with fixed mast 

Throughout this section, let p be a path of length 1 from a vertex e( 1) to a vertex 

e(l + 1). We will use p to denote both the element in KT and its residue class in A, 

unless there is a danger of ambiguity. 

Roughly speaking, the affine K-variety I$ corresponding to the uniserial /i-modules 

with mast p consists of points that are families of coordinate vectors of the following 

type: Given a uniserial left /l-module U with mast p and top element x, we equip 

U with the K-basis pi, for p = api, and string up the coordinate vectors of the 

elements qx, where q runs through the paths in KT not vanishing in A. Of course, these 

coordinate strings pin down the corresponding uniserials. The first point to be addressed 

is the fact that these strings of coordinate vectors actually form an affine algebraic 

variety V, which, in fact, is readily accessible on the basis of a coordinatization of A. A 

crude outline of the procedure for assembling a finite set of polynomials which defines 

V, is as follows: Replace the scalars k,,q arising in the linear dependence relations 

qx = C,=,, ki,qpix inside an arbitrary uniserial module with mast p and top element 

.X by independent indeterminates XL+ and expand a representative set of relations from 

I by means of substitutions q = C,=,, X.qpl inside the polynomial ring KT[X,,,]. A 

repetition of this substitution process will eventually reduce the relations to equations 

of the form C,=,, z,p, =O, where the zi are polynomials in K[X,,,]. Reflecting the fact 

that the elements pix are K-linearly independent, our interest will be in the simultaneous 

vanishing set of these polynomials 7,. What makes the resulting affine variety fairly 

manageable is the fact that we can significantly reduce the set of variables without 

renouncing information. 

Next we give a formal description of the variety L$ and the canonical map QP from 

V, onto the set of isomorphism classes of uniserial n-modules with mast p. Instead of 

considering all the indeterminates X,., mentioned above, we will restrict our attention 

to those of the form X&,, where (z, U) is a ‘detour’ as defined below. 

Definition 2. (1) A detour on the puth p is a pair (x, u), where LX is an arrow and u 

is a right subpath of p (length 0 being allowed) such that 

(i) xu # 0 in KT, 

(ii) xu is not a right subpath of p in KT, but 

(iii) there exists a right subpath z’ of p with length(v) > length(u) + 1 such that the 

endpoint of c’ coincides with the endpoint of x. 
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Fig. I. 

See Fig. 1. For ease of notation, we will often abbreviate the statement ‘(a, u) is a 

detour on p’ by ‘(c(,u) H p’. 

(2) Suppose that p is a path of length 1 that passes consecutively through the vertices 

e(l), . , e(l + 1). A route 012 p is any path in KT which starts in e( 1) and passes 

through a subsequence of the sequence (e( 1 ), . . . , e( It 1)). (We include e( 1) and p in 

the set of routes on p.) 

Remarks. (a) In particular, each right subpath of p is a route on p. More generally, 

any right subpath of a route is again a route. 

(b) In our work with routes, the following factorization property will be crucial: 

A path r~Kr is a route on p if and only if it can be written in the form 

I r=r a,u,~..alul 

for some m > 0 such that there exists a corresponding factorization 

of p with the property that (ai,tli) is a detour on w; with endpoint = endpoint 

for each i<m, and r’ is a right subpath of p’. (See Fig. 2.) Note that such a factor- 

ization of p corresponding to the given route r need not be unique. 

(c) The length of any route r on p is bounded above by length(p). 

(d) Whenever rw is a route on pw, then r is a route on p. 

We start by describing the polynomial ring in which we will be working. Given any 

detour (a,~) on p, let 
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be the family of right subpaths of p in KT which are longer than u and have the 

same endpoint as X. In most cases, it will be more convenient to refer to the index 

set I(x,u) for V(cr,u) than to the set V(CX,U) itself. The polynomial ring of our choice 

will then be 

KT[X] =Kr[lqcc,u)/iEz(cc,u), (a,u)?lp] 

with coefficients in the path algebra KT and independent variables X~(X,U). Next we 

introduce an equivalence relation on KT[X] as follows: Let Y(p) be the left ideal of 

K&Y] generated by all the paths q in KT which fail to be routes on p together with 

all the differences 

for detours (c(, U) on p. Then, clearly, the relation ‘CJ z z H 0 - 5 E 9(p)’ for 

a, z E KT[X] defines a congruence relation relative to addition and left multiplication. 

The proof of the following easy observation is left to the reader. 

Observation 3. Each element of the path ulgehra KT is g-congruent to a unique 

element of’ the form C,_,, P T 1 (X)p’, where the zP,(X) are polynomials in 

K[X] = K[X(a,u)li~l(~~u), (~~u)>?pl. 

To obtain these polynomials zP,(X) for a given element z E KT algorithmically, 

consider the following sulwtitution equations jar p: First, q g 0 for any path q in KT 

which fails to be a route on p, and second, 

for all detours (x, U) on p. We use the phrase ‘inserting the substitution equations from 

the right’ for the following steps: 

i 

0 if q’ is a nonroute on p, 

q”q’ s c- rEICa,ujX;(a,u). q”c,(cx,u) if q’=w with (cr,u)~p. 

Note that if q’ is not a route on p, then neither is q”q’. Inserting the substitution 

equations from the right into the paths occurring in an element z E KT and repeating 

this procedure clearly leads to the equivalence z--C zP/(X)p’ with T~~(X)EK[X] after 

at most d steps, where d is an upper bound on the lengths of the paths involved in z. 

Now let L be the Loewy length of A - i.e., L is minimal with respect to JL =0 ~ 

and denote by I CL) the K-subspace of I consisting of all elements which can be written 

as K-linear combinations of paths of lengths at most L. Moreover, choose a finite 

K-generating set tl,. ., ts for the space I (L) By the above remarks, there are unique 

polynomials z,,,,,(X) E K[X] with the property that t, 2 ~p=mp, si, P,(X)p’ for 1 5 i < 

s. We now give a definition of the variety V, depending on this choice of relations 
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ti, . . , t,; this is the most convenient description for purposes of computation. However, 

as we will immediately observe, this definition of l$ is independent of the choice of 

the ti. 

Definition 4. Let Vp = V(Z~,~~(X) ( 1 < i 5 s and p = 0~‘) be the simultaneous vanish- 

ing locus of the polynomials ri,,,(X) in affine N-space AN = AN(K), where N = 

c (a,u)llp Il(% u)l. 

Remarks. (1) The affine algebraic set V, is independent of the choice of a K-generating 

set for the K-space ZcL); in fact, I$ is the vanishing locus of all polynomials zpj(X) 

arising in congruences z s C ~ P_.P, rpj(X)p’ for elements z from the ideal I. The former 

assertion is an immediate consequence of our construction, while the latter can easily 

be checked as follows: If the length of p exceeds the Loewy length L of A, then V, 

is the empty set, because the right subpath pi of p of length L belongs to ZcL), and 

hence the congruence pi ^ 1 pi places the constant 1 into the ideal of V,. If, on the 

other hand, p has length I L, all paths in KT of length greater than L are non-routes 

on p and are hence reduced to zero under our equivalence relation. 

(2) Our next remark along this line often saves a considerable amount of compu- 

tational effort. Namely, observe that, whenever ri, . . . , r, E Z generate Z as a left ideal 

of KT, then Vp = V(p&X) 1 1 < i 5 m, p = l q), where Y, ̂  CPEe4 pi,q(X)q with 

~i,q(K) EKWI. 
(3) A priori, the family of algebraic varieties V,, where p runs through the set of 

paths in KT which do not vanish in A, clearly depends on the chosen coordinatization 

of the split algebra A, that is, on a fixed set ei, . , e, of primitive idempotents and K- 
bases for the spaces eiJej/eiJ2ej. In fact, both the labels of the varieties considered and 

their realization in affine space depend on the choice of coordinates. This leads us to 

the following uniqueness problem: If KZ/I “KT/Z’, are the varieties V, and 5’ formed 

relative to the two ideals Z and I’ isomorphic? While in general there is uniqueness only 

up to birational equivalence (see Section 5), the answer to this isomorphism question 

is positive for large classes of algebras (see [5]). 

It is easy to compute the varieties V, from a given coordinatization, i.e., from a 

presentation of n in terms of quiver and relations. These varieties will permit us to 

classify the uniserial modules in terms of the correspondence described in the main 

theorem of this section (Theorem A). Before we state this theorem, we illustrate the 

construction of the varieties V,. 

Example 5. Let A = KT/Z, where Z is the quiver 
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and I is the ideal of KT generated by the following relations: 

Moreover, consider the path p = z@3z2y2al. To compute the variety 4, observe that 

the detours on p and the corresponding substitution equations are as follows: 

Next observe that the relations listed above, together with the paths y3a] and y3,6], 

generate I as a left idea1 of KT; consequently, Remark 2 following Definition 4 tells 

us that we need only consider these elements of I in determining a generating set 

of polynomials for the idea1 of 5. Since these last two paths, as well as y3, are 

nonroutes on p, they are G-equivalent to 0 and hence do not lead to conditions on 

the indeterminates Xi. We now insert the substitution equations into the remaining 

relations. 

First ,82,x] e X~C.Q’/~~], which, in view of fi22] EZ, gives us the equation X5 = 0 for 

V,. Analogously, the combination of /&ya] g X7c(2y2c(] and pzycl] EZ implies XT = 0 

for the points of I$. Moreover, ~4~(3fi2/I, Q ~4~13~2(X,c1, +X2yc(l +X3y2a,) Q XlXsp + 

X2X7p+X3Xgp yields X]Xs+X&,+X3Xs =0 on 5. In view of X5 = XT = 0, we obtain 

X3Xs =O. We further compute C(4a3fi2Y2C(] - p 2 (X8 - 1)p to conclude that Xs - 1 = 0, 

and consequently also X3 = 0, on $. Next, p4~3%2~~] - c(4a3&7p] E X6/14/?3ci~y2z] - 

XICQCZ~E~C~] -X2k$a3a2yal -X3a~E3a2y~zl 2 Xdisx,op -X,X4p-X2X6p-X3p, which 

gives us X6x9X]o - X]X4 - X,X, - X3 = 0, and X,$&X]0 - X,X4 - X,X, = 0 in 

view of the preceding equations. Analogously, the last four relations yield X] -X4 =O, 

Xe+X]X,+X2& = X,+X2 = 0, X6-X9 = 0, and X~-X]O = 0, respectively. We deduce 

that 

v, = v(x,, x5, x7, & - 1, &-%~I0 -xl& -x,x6, 

xl - x4, x2 + x6, x6 -x9, x6 - x10). 
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Clearly, V, is isomorphic to the variety V( Y2 - X7 - X2) in affine 2-space. Over the 

real numbers, we thus obtain the standard r-curve: 

In this example, the correspondence between the points of I$, and the isomorphism types 

of uniserial n-modules with mast p, as described in Theorem A below, is bijective, 

even though our path p does include an oriented cycle. 

The following theorem contains basic information about the ‘back and forth’ between 

points on the variety I$, on one hand and uniserial n-modules with mast p on the other. 

Theorem A. Suppose that p is u path in KT starting in the vertex e( 1). 

(I) There is a subjective rmp @,, ,fiom the mriety Vp to the set of isomor- 

phism types of uniseriul hfi A-mochles lvith mat p. It ussigns to euch point k = 

(k,(a, u))it~~.~)~~ in y, the isornorphism tl’pe of the module Ae( l)/lJk, 

where 

r/k = ( ( c A xu - c k,(x,u)u,(x,u) + 
8 ( c 441) . 

(r.u)llp Icf(x.rr) y not a route on p 1 
Alternutely, the uniseriul module Ar( 1 )/Uk representing O,,(k) cun he described as 

the unique uniserial j&or module l\,ith must p of’ the module 

(II) The mriety l$ is nonenlptJ> if’und orzl~, $’ there exists u uniseriul left A-module 

ivith mast p. 

(III) Provided that p does not hme u proper right suhputh wjhich is an oriented 

cycle of positice length, the rnup @/, is hijcctioe. 

Proof. The following maps will repeatedly prove useful. For any family of scalars k = 

(ki(~,U))i~/(y,U),(r,lr),t~ in A”‘, we will consider a K-linear transformation Fk : KT 4 KT 

depending on k: Namely, Fk sends all the paths which fail to be routes on p to zero 

and acts on routes q as follows: If q is a right subpath of p, then Fk(q) = q, and 

if q = q’cIu, where (x,u) is a detour on p, then Fk(q) = ~iE,Cr,u) ki(r,u)q’Vi(U,u). 

Then, given any element z E KT which is a K-linear combination of paths of length 
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at most m, the image of z under (Fk)m equals xPEeP, TPl(k)p’, where xPEePI ~[,r(X)p 

is the unique element in CPZ.,j, K[X]p’ equivalent to z under ‘2’; here we are work- 

ing inside the polynomial ring KT[X], where X stands for the family of variables 

Xi(a,zl). In particular, if z belongs to I, the polynomials r,/(X) fall into the ideal of 

I$ (by the first of the above remarks) and consequently vanish at k whenever k E li’,; 

in other words, (Fk)“(z) = 0 in that case. 

To any family k = (k,(x, u)) t AN as above, we moreover assign the left ideal H4 

of the path algebra KT, generated by the paths q which are nonroutes on p and by 

the elements xu - ~l~,~z,U~ k;( r, U)ui(x, u), where (CC, U) runs through the detours on p. 

Observe that, for any element z E KT and any choice of k, the difference z ~ Fk(z) 

belongs to 4; in particular, the subspace R. of KT is invariant under fi. 

Let @ = QP be defined as in the statement of the theorem and, for k E I$,, identify 

Q(k) with the module /le( I )/l/k. 

Claim 1. For emh k E V,, the module Q(k) is uniserid with must p. 

Indeed, write p = bl .../j’,, where the [jI are arrows, and set x = e( 1) + Uk E 0(k). 

It clearly suffices to show that Q(k) has K-basis p1 . ptx, 0 < i 5 1. Indeed, once this 

is established, we have J’@(k) # 0, and, for reasons of dimension, the radical powers 

J’@(k), 0 <: i < I, constitute a composition series for Q(k). 

To see that the elements /Ii prx, 0 < i 5 I, form a K-generating set for Q(k), 

it suffices to check that, given any route r on p, the element rx E Q(k) is a K-linear 

combination of the /$ . . /3’,x. W e p rove this by induction on d = I- length(trr ), where 

~1 is the right subpath of r of maximal length occurring also as a right subpath of 

p. If d = 0, then r = p, and there is nothing to prove. So suppose d > 1, and let 

r = r’z,+,y xl ~1. If s = 0, then r is a (proper) right subpath of p, and we are again 

done. If, on the other hand, s > I, the definition of Q(k) yields 

If the path r’cws.. . x2U2Ui(Zl,UI ) is not a route on p, then r’qu, x~z4201(ar,ur )X 

=0 by construction. The induction hypothesis applies to each of the remaining terms 

r’c(,u,, . ~~u~zI;(E~, u1 )x, since the lengths of the right subpaths c’,(xI, ~11) of p exceed 

the length of ~1. 

To prove that the elements /I; . . /i’lx for 0 5 i < I are linearly independent, it suffices 

to verify that px = Bl... /31x # 0. Assume the contrary, and consider the following 

presentation of Q(k) as a KT-module: Q(k) = KTe( l)/(Ze( 1) + &e( 1 )), where Wk is 

as defined above. So px = 0 is equivalent to the existence of an element u E Ze( 1) such 

that p + a E Wk. To reach a contradiction, we will first derive that p E Wk. Suppose 

that a is a K-linear combination of paths of lengths at most m. In view of the fact 

that awl, the first paragraph of the proof shows that Fm(a) = 0. Moreover, due to the 

&invariance of wk, the fact that p + a E Wk yields p = c.m( p + a) E Wk as required. 

But the containment pE Wk is in turn impossible, as we now prove. 
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Assume that p is a K-linear combination of terms q’(au - CiEl(l,u)ki(r,u)t;,(a,u)) 

and terms q”q, where q is not a route on p and q’, q” are paths in KT. Since none of 

the paths of the form 01u going with a detour (c(,u) on p is a right subpath of p, the 

above equality forces p to be equal to one of the terms q’ui(cL,u), say p = qbUi(xo,uo). 

This clearly implies that q@ouo is a route on p. Observe that, more generally, q’clu is 

a route on p, whenever (a,~) is a detour with the property that q’t.j(U,u) is a route 

on p for some j E [(cc, u). Let ui be a right subpath of p that has minimal length with 

respect to the following properties: 

(a) for some arrow ai, the pair (XI, UI ) is a detour on p, and, for a suitable path 

q/1, the element q/l(“r,ul - Ck,(a~, UI)U;(CII, UI)) occurs nontrivially in the above rep- 

resentation of p as an element of Wk; 

(b) q/1ctlul is a route on p. 

Since cliui is not a right subpath of p and, a fortiori, q{!xlul # p, the term q{ctj u1 

must cancel out of our representation of p as an element of Wk. Clearly q/lf.xlul # q”q 

whenever q fails to be a route on p, and q/1 xl UI # qiazuz whenever (~2, ~42) is a detour 

different from (ai,ui). Thus q:zlul = qkuj(a2,zi2) for some j and some detour (~2,242) 

of P such that qXazu2 - CiElC12,u2j k, (x2, u2 )Vi( c(*, u2 )) occurs nontrivially in our repre- 

sentation of p. On one hand, this forces qkt$(a2,uz), and consequently also qiazu2, to 

be a route on p, whence length(u2) > length(ui) by our choice of ~1. On the other hand, 

the equality ‘q/lcrlul = qiuj(x2,u2)’ is only possible when length Uj(C12,U2) 5 length(ui), 

for u 1 is the longest right subpath of p which is also a right subpath of q/1 ~1 u 1. But 

this, in turn, entails length(u2) < length(ui). We have reached a contradiction, which 

proves that p 6 Wk, and which thus completes the proof of Claim 1. 

Claim 2. Whenever U in A-mod is a uniserial module with mast p, there exists a 

point kE V, such that U % Q(k). 

To find a suitable point k E 5, let x = e( 1 )x be a top element of U; then the map 

f : A( 1) -+ U = /ix which sends e( 1) to x is a projective cover of U. Again write 

p = PI . . /ill, where the /Ii are arrows. Then, clearly, J’U = Api. . fllx for i 5 1, and 

the elements fii . . flix, 0 < i 5 I, form a K-basis for U. 

If (LX, U) is a detour on p, then nxux = J”x for some m > length(u) + 1. Conse- 

quently, letting e be the primitive idempotent with Ed = (x, we obtain that clux is a K- 

linear combination of those elements pi . fllx of U for which PI . . PI is a path longer 

than u ending in e. But these latter paths are precisely the ones that belong to the family 

(Ui(% U))iEl(x,u), which shows that crux = CiEl(a,u) ki(a, u)ui(u, U)X for suitable scalars 

ki(m, u) EK. (Note on the side: Once we have fixed a top element x of U, the scalars 

ki(a,u) are actually uniquely determined by U, since the elements Ui(a,u)x, iEl(cc,u), 

are K-linearly independent.) In other words, via the map f, the uniserial U is an epi- 

morphic image of the module A4 := ne( 1)/C~3,u)oP n(ctu - CiE,(or,u) ki(a,u)vi(a,u)). 

Set k = (ki(cr,U))iE/(a,U),(2,U)I1P. In order to prove Claim 2, it is thus enough to show 

that (a) qx = 0, whenever q E KT is a path which fails to be a route on p, and (b) 

k E V,. For reasons of dimension, we will then obtain that the epimorphism Q(k) ----f U 
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induced by f is an isomorphism. In particular, statement (a) will guarantee that, up to 

isomorphism, U is the only factor module of A4 which is uniserial with mast p. 

For (a), suppose that the path q is a nonroute on p. It is clearly harmless to assume 

that q = qe( 1). Write q = q’u, where u is the longest right subpath of q (possibly of 

length zero) which is a route on p. Moreover, let p’ be the shortest right subpath of 

p such that u is a route on p’, say p = p”p’. Then length q’ > 1, that is, q’ = q”y for 

some arrow y, and the fact that yu is not a route on p is equivalent to the nonexistence 

of a right subpath 2’ of p which is strictly longer than p’ and ends in the same vertex 

as 7. If ux # 0, then the minimal choice of p’ implies that nux = /Iw’x where w’ is a 

right subpath of p with length(w’) > length(p’). If p = w”w’, then w” is a left subpath 

of p” such that ~ux- = ~JV’.X is a uniserial module with mast VV”. Consequently, the 

fact that p”, and hence also M?“, is devoid of right subpaths of positive length ending 

in the same vertex as 7 forces yux to be zero. Thus qx = 0 as required. 

To verify that k is a point in V,, let z be any element in I; say z is a linear 

combination of paths of lengths bounded above by some integer m. Moreover, let 

C/@ zp,(X)p’ be the unique element in xPsmP, K[X]p’ which is equivalent to 

z under g. We want to show that all of the polynomials rpr(X) vanish at k. For 

that purpose, view I/ again as a KT-module under the action induced by that of A, 

and note that zu = 0, as well as wkx = 0. Since Fk(_y) - y E Wk for all y E KT, we 

infer that F[(z)x = 0 for all Y 2 1. But as we pointed out in the first paragraph, 

4%) = C/?=./?’ zp,(k)pt, and so, in particular, CpTep, tpJ(k)p’x = 0. Now use the 

fact that the elements p’x, where p’ runs through the right subpaths of p, are K-linearly 

independent, to conclude TpJ(k) = 0 for all p’ as required. This completes the proof 

of part (I). Part (II) is an obvious consequence of part (I). 

(III) In proving the surjectivity of @, we saw that, given a uniserial module CJ with 

mast p and a fixed top element x, there is a unique point k = (ki(c(, u)) E W’(U) 

such that slux = CiE,(r.u) k;(u, U)Vi(Y, u)x for each detour (c(, U) on p. In other words, 

each subfamily (ki(a, u)),E/(l,u) of k is the coordinate vector of clux relative to the 

K-basis u;(x, u)x, i E I(u, u), of eJ ‘e”@h(u)+1 U; here e is the primitive idempotent in 

which c( terminates. Since this coordinate vector will not change if x is replaced by ax 

for some nonzero scalar a, we see that, if U has a unique top element, up to scalar 

factors - equivalently, if p is not of the form p = p’c for a cycle c of positive length 

from e( 1) to e( 1) - the set Q-‘(U) is a singleton, i.e., Qi is injective. This leaves us 

to deal with the case, where p is a cycle from e( 1) to e( 1) such that no proper right 

subpath of p is a cycle e( 1) + e( 1). In that case, an arbitrary top element y of U 

is of the form y = ux + bpx for a, b E K and a nonzero, and since ctuy = czuax and 

v;(r,u)y = Ui(Z,u)aX for each detour (2,~) on p, the coordinate vector of auy with 

respect to the new basis is the same as that of xux with respect to the old basis. Again 

we deduce that @ is injective. 0 

Note that, in case K is algebraically closed, Theorem A(II) provides us with an 

algorithmic procedure to decide whether a given path p: e -+ e’ in KT occurs as mast 

of a uniserial left /i-module. Indeed, when combined with Hilbert’s Nullstellensatz, 
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Theorem A yields the following: There is a uniserial A-module with mast p if and 

only if, for some K-generating set tl, , t,T for I CL), the resulting polynomials ri,p’(X), 

as in the definition of the variety I$, generate a proper ideal of K[X]. The ensuing 

question, whether or not I belongs to the ideal generated by the r;,,,(X) is well-known 

to be decidable by way of the Grocbner method. 

We will extract an observation from the preceding argument which will be useful 

on several occasions. For a smooth formulation, we require the following notational 

convention: Given a uniserial module lJ with mast p and a detour (x,1*) on p such 

that x ends in the vertex e, we denote by U(x,u) the K-subspace eJ’en@h(u)+’ U of U. 

Note that, for any top element x of U, the set {u,( z, u)x ( i ~l(cr, u)} forms a basis for 

this subspace. 

Corollary to the proof of Theorem A. Let N he the disjoint union of the index sets 
I(a,u), where (a,~) runs through the detours on p, and let k he u point in AN(K), 

suy k = (k,(a, u))iE/(r.u),(r,u)ll,~, Then k belongs to V, precisely when there exists a 

uniseriul module U with must p cmd top element x such that, for each detour (CC, u) 
on p, the projection (k,(rx,~))~~t(~,~,, of k onto A’(r,u) is the coordinute vector of the 

element (xux E U(r, u) with respect to the K-basis { v;(r, u)x 1 i l l(a, u)}. 

In the positive case, any such uniserial module U belongs to @r(k), und the top ele- 
mentx = e(l)+Uk ofne(l)/u. 1 x IUS the property that xux = Citlcl,uj ki(a, u)v~(%, U)X 

for all (c(,u) 11 p; here LJk is (IS in the statement of Theorem A. 

Let L again denote the Loewy length of A, and I CL) the K-subspace of I consisting 

of all elements of I which can be written as K-linear combinations of paths of lengths 

< L. In the definition of Q, we picked a K-generating set for [CL) to arrive - via the 

substitution equations for p - at a set of polynomials that determines V,. This set may 

be vastly redundant, as we already pointed out after Definition 4. In fact, it suffices to 

consider elements tl,. . ., tF E IcL) such that ZCL) C CL=, Krti; if again z,,,/(X) E K[X] 

are such that t, e C,_,l, zi,,,t(X)p’ for 1 5 i 5 s, then 

On the other hand, it does not suffice to consider a set of relations which generates I 

as an ideal, as the following example demonstrates. 

Example 6. Let A = KT/I, where r is the quiver 

and IL KT is the ideal generated by the relations S[j - EY, cfi, and 6~. Moreover, let 

p = 6/%x. The detours on p are (7, #z) and (a, pa), and hence the substitution equations 

for p are ycc 2 Xlpa, EPC( 2 X,p, as well as q Q 0 whenever q fails to be a route 

on p. Note that none of the paths occurring in the above relations is a route on p, 
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and so the polynomials resulting from these relations via the substitution equations are 

all zero. On the other hand, the relations 6/?a - a;,~ and c@ yield 1 - X,X, = 0 and 

X2 =O, whence I$, = 0. 

The following instance of failure of bijectivity of @$, is prototypical. 

Example 7. Let A = K~/(H~), where r is the quiver 

If p = /?cc, then V, = A’, while $( V,) is a singleton; indeed, for any scalar kg K, the 

uniserial modules /let/A@ - k@) and Ael/Ag are isomorphic. 

However, the sufficient condition for bijectivity of QP given in Theorem A(lII) is 

not necessary. Indeed, if r is the quiver 

and A = Kf/(cqm), the path p = B;,x again consists of a cycle followed by a nontrivial 

left subpath. Again we have I$ = A ‘, but this time the map aP is bijective. 

Definition 8. Again, let p be a path in KT and A= Kr/I. We will refer to V, as the 

uniserial variety oj’ A -mod at p. The irreducible components of the uniserial variety 

5 will be called the uniserial components of’ A -mod at p. Moreover, we will say that 

a uniserial component W of V, intersects & if $p( n/) n Im(@,) # 8. 

Let us start by looking at two trivial cases: If p = e is a primitive idempotent, then 

I$ is a singleton, represented by the simple module centered at e, and if p = x is an 

arrow e --f e’, then Vp = A”, where n is the number of arrows e + e’ different from 

2. In each of these cases, the uniserial variety at p consists of a single component. 

Observe that, in case the quiver r of A has no double arrows between any two 

vertices, the images $( J$,) of the uniserial varieties, where p runs through the paths 

in KT, yield a disjoint partitioning of the set of isomorphism classes of uniserial objects 

in A-mod. In general, however, the uniserial varieties at p and q, where p and q are 

distinct paths of the same length passing through the same sequence of vertices, may 

intersect. We will see in Section 5 that the uniserial components at p which intersect G 

and those components at q which intersect l$ coincide in number and can be arranged 

into birationally equivalent pairs. 

Two further problems impose themselves as follow-ups to the preceding theorem. 

One concerns functoriality of the assignment A = KT/Z H (V,), a path ,” K,- and, in parti- 

cular, the behavior of the family of varieties V, under algebra isomorphism. The other 

is the isomorphism problem for uniserial modules. We defer the former to [5], and 

proceed by tackling the latter. 
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4. The isomorphism problem for uniserial modules 

Since an obvious necessary condition for isomorphism of two uniserial modules is a 

joint mast, we wish to explicitly describe the equivalence relation on V, which partitions 

I$ into the fibres Q;‘(U), where I/ runs through the uniserial modules in the image 

$(I$). Theorem A(M) provides us with a partial answer: If the path p does not start 

with an oriented cycle, i.e., if p is not of the form p’c where c is an oriented cycle 

of positive length, the map @,, is a bijection; in other words, the points on the variety 

F$ form a complete system of isomorphism invariants for the uniserials with mast p in 

that case. In general, injectivity of QP may fail, as we know from Example 7. To fill 

the resulting gap in the information on the uniserial modules with mast p stored in I$, 

we will construct a system of equations S,(X, Y,Z) in the variables Xi(lr, u), Yi(a,u) 

(for (CL,U) 11 p and i E Z(a,u)) and finitely many variables Zj, which is linear in the Zj 

over K[X, Y] such that, for any pair of points k,k’ E I$, the linear system S,(k,k’,Z) is 

consistent if and only if Qp(k) % @Jk’). So, loosely speaking, the family of uniserial 

modules with mast p can be identified with the variety I$ modulo a certain system of 

linear equations with coefficients in K. Since it is easy to establish, this system will 

provide a handy decision process for the isomorphism problem on the basis of the 

varieties V,. 

To describe the system S,(X, Y, Z), suppose that the path p : e( 1) 4 e(l + 1) has 

precisely t right subpaths of positive length ending in the starting vertex e(1) of p, 

say wt,...,wt. Then our system will have the t linear variables Zt,. . . ,Z,. Start by 

considering the following equations ,!?(a, u) in KIJX, Y,Z], one for each detour (a, U) 

on p: 

(EC4 u>> (XU 

( 

C?(l)+ 2ZjWj 

j&l i 

= C &(CL,U)U~(E,U) 

iE/@,U) ( 

e(l)+ 2ZjWj ; 

j=l ) 

here the Vi(a,u) are as in the definition of the substitution equations for p. Now expand 

both sides of these equations by successively inserting from the right the substitution 

equations Bu ^ CielCB,,., Y;( fl, v)a,(b, a) for detours (8, v) on p, and the equivalences 

q 2 0 for those paths q E KT which fail to be routes on p. As pointed out in Observation 

3 of Section 3, the equation E(cc,u) will eventually take on the form 

C ai(X, Y,Z)ui(&U) = C bi(X, y2z)~t(%u> 

iEf(x,u) iEl(r,u) 

for suitable polynomials ai(X, Y, Z), b&X, Y, Z) E K[X, Y, Z] which are uniquely deter- 

mined by the left-hand and right-hand sides of equation E(u,u). Indeed, this is always 

the terminal stage of the substitution process, since each substitution step replaces a path 

q by a linear combination of paths of lengths > length(q), all of which have the same 

endpoint as q. Now collect all of the equations of the form a@, Y,Z) = bi(X, Y,Z), 

iEZ(a,u), arising in this way for arbitrary detours (a,~) on p, and label the resulting 

system S&C, Y,Z). Observe that this system is polynomial in the Xj and Yj, linear in 

the Zj. 
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Theorem B. For k, k’ E V,, the linear system S,(k, k’, Z) in Z = (Z,, . . ,Z,) is consis- 

tent if and only ij’ $(k) 2 Q&k’). 

Proof. First suppose that there exists an isomorphism f’ : $(k) - $(k’) of n-modules, 

and let x and y be top elements of $(k) and $(k’), with the property that rl*x = 

CiEl(x,u) ki(a, uh(~ u>x and =uy = CiEfca+) ( k!( a, u)ui( a, u) y, respectively, for any de- 

tour (E,u) on p (here we identify the isomorphism classes @Jk) and $(k’) with the 

distinguished representatives described in Theorem A). The equation f(x) = e( 1 )f(x) 

clearly yields j’(x) = coy + xi=, ciwiy with c, E K and co # 0; without loss of gen- 

erality, we may assume CO = 1. Let ((x, u) be a detour on p such that x ends in the 

primitive idempotent e, and consider the following equality inside the K-vectorspace 

e@,,(k’) which results from our isomorphism f: 

Clearly, the left-hand side of equality (t) reduces to the form 

c a;(k, k’, c)u;(u, U)J~ E e@,(k’), 

iEl(a,u) 

where c = (cl,..., cr) and ai(X, Y,Z) is the polynomial occurring in the definition of the 

system S,(X, Y,Z); this is clear from the discussion prior to Theorem B. Analogously, 

the right-hand side of (t) is equal to the element 

c b;(k, k’, c)uI(~, U)Y E e@Jk’) 
iEl(X.U) 

with h;(X, Y, Z) E K[X, Y, Z] as above, and consequently equality (t) reduces to 

(1) C ai(k, k’, c)U;(cI, U)y = C bi(k, k’, c)Ui(cI, u)y. 

iEl(r.u) iEl(r,u) 

Since the vectors ui(a, u)y, i E 1(x, u), are K-linearly independent, this shows that the 

scalars ci , . . , ct satisfy the system S,(k, k’,Z). 

Conversely, suppose that the system S,,(k, k’, Z) is consistent, and let c = (cl,. . , c,) E 

K’ be a solution. Moreover, denote the residue class of the vertex e( 1) in $(k) by 

X, that in $(k’) by y (again we identify $(k) and dn,(k’) with the representatives 

described in Theorem A). We wish to show that the assignment x H y + cJ=, cjwjy 

extends to a well-defined A-isomorphism $(k) --) $(k’). It clearly suffices to show 

that the annihilator of x in /i is contained in the annihilator of y + xi=, cjwjy, since 

these two elements are top elements of the uniserials d&(k) and $(k’), respectively, 

and the uniserial modules G&/c) and @,,(k’) have the same length. Recall that, by the 

definiton of Q&k), the left annihilator of x is, as a left ideal of /i, generated by the 

(residue classes in n of) the elements CIU - CiE,Cx,ujk;(~, U)Ui(cI, u), where (u, U) runs 

through the detours on p, and by all the (residue classes of) paths q which fail to be 
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routes on p. That each of the former elements annihilates y + cJ=, CjWjy is guaran- 

teed by the fact that c = (cl, . . , cl) satisfies the system S,(k,k’,Z). Indeed, from the 

fact that c satisfies (I), we infer that c also satisfies equality (t) above. So let q be 

a nonroute on p. By construction, q also annihilates y; moreover, given any of the 

subpaths Wj of p ending in e(l), the composition qwj is not a route on p either by 

Remark (a) following Definition 2. This implies that also qw,[y = 0 for all j, and hence 

that q(y + cl=, cjwjy) = 0 as required. 0 

We illustrate our method for solving the isomorphism problem with two examples. 

In the first, V, g A3 and each of the fibres of QP is a subvariety isomorphic to A’; in 

the second, V, 2 A’ consists of a single fibre. 

Example 9. Let A = KT/I, where r is the quiver 

and I is the ideal in KT generated by a2 , yB:;, y/k.cy. Consider the path p = /hyfia. 

The detours on p are (P,el), (fl,yj&), and (~,a), yielding the substitution equations 

Inserting the substitution equations from the right into a K-generating set for 1c6) - 

note that 6 is the Loewy length of A - gives us X4 = Xs = 0, while imposing no 

conditions on Xi, X2, X3. Thus I$ g A3. 

To determine the system S,(X, Y,Z), we observe that there are precisely three right 

subpaths of p of positive length which end in e], namely c(, y/Ax, and ayp~; thus 

Z = (Zi,Z2,Z3). Setting z = el + Zlcc + Zz;‘flc( + Z3xyfl~ and inserting the substitution 

equations a e YljJx + Yzp, /3yjh1 g Y, p and CY’ 2 0 repeatedly into the three starting 

equations E(P,el): /Iz = Xi@z +X,pz; E(fl,yfla): &/kzz = X3pz and E(a,a): cz2.z = 

X~Y,!%U + Xsccyflczz as described ahead of Theorem B, we obtain 

x,/h + z2x1p + xzp = Yl pLx + yzp + Zl BE + Z2PYBU + Z3P 

from equation E(/l,el), Xjp = Yjp from the second of the starting equations, and 0 = 0 

from the third. Thus the system S,(X, Y,Z) is 

Xl = Y, +z1, z2Xl +X2= Y2+ZzY3+Z3, x3 = Y3 

in this example. In particular, given any two points k = (k,, k2, k3) and k’ = (ki,ki, kj) 

in Vp ” A3, the linear system S,(k, k’, Z) in ZI , Z2, Z3 is consistent if and only if 

k3 = ki. This shows that, up to isomorphism, there is only a one-parameter family of 

uniserial modules with mast p, the parameter being k3 E K. 
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Let us translate this information into the graphs of the uniserial modules with mast 

p. Each of the uniserial modules corresponding to a nonzero value of k3 has three 

different graphs, depending on the choice of top element. These graphs are: 

n 
i 
1 P 

4 II 
2 

or : I B or ‘i 

The uniserial module corresponding to the value k3 = 0 has graphs 

1 

Cx 

6; 
2 

or ^J 

9 

P 

xi 
pl 

2 

again depending on the choice of a top element. 

Example 10. Let A = KT/I, where r is the quiver 

1 

‘ct 

or ; 
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and Z is the ideal in KT generated by the relations 

Observe that these relations, together with ~a6 - syfix6 and EC& - syj?aGa, as well as 

eight monomial relations of the forms fiyq and 6yq, generate Z as a left ideal. Moreover, 

consider the mast p = ~y~ct&x. The detours on p are (b, cc), (a, cc), and (E, &a). Inserting 

the corresponding substitution equations 

PLY G X, @&X, Eci g x,p, z&i ^ x,p 

into the relations yields V, = V(& - Xi, Xx - 1) = { (ki , kl, 1) 1 kl EK} E A’. 

Note that w = 6~ is the only right subpath of positive length of p which ends in 

ei, whence the family Z of variables in the system SJ.7, Y,Z) is reduced to a single 

one. Using the above method for determining the system S,(X, Y,Z), we obtain, for 

any two points k = (k,,kl, 1) and k’ = (k;,ki, 1) in I$: 

(s,(k, k’, Z)) k;+Z=k,, k;+Z=k,, 1 = 1. 

Since this system is consistent for arbitrary choice of k, k’ E V,, there is, up to isomor- 

phism, precisely one uniserial left n-module with mast p. The following are all its 

graphs relative to suitable top elements: 

and 

We conclude the section with a look at hereditary algebras. As is readily seen, in 

that case, all of the varieties V, are full affine spaces of ‘maximum’ dimension. We 

will see that the split hereditary algebras are actually characterized by their varieties 

of uniserial modules, which answers a question of K.R. Fuller. 
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Proposition C The algebra A is hereditary cf and only if for each path p in KT, the 

variety V, is isomorphic to the fill afine space AN(p), where 

and Aa stands for a singleton. 

In case these conditions are satisfied, all the maps 

@r : v, + (isomorphism types of uniserials in A-mod with mast p} 

are bijections, i.e., Qp(k) E Qp(k’) precisely when k = k’. Moreover, for a hereditary 

algebra A over an injinite jield K, the following statements are equivalent: 

(i) There are only finitely many isomorphism types of uniserial A-modules. 

(ii) Given any pair of vertices e and e’ in r and an arrow c( : e + et, the arrow a 

is the only path from e to e’ in KT. 

(iii) For any finite sequence of simple A-modules there is either no or precisely one 

uniserial module having this composition series, depending on whether or not there is 

a path in KT which passes through the corresponding sequence of vertices. 

Proof. To prove the first equivalence, observe that, for any path p, the coordinate 

ring of the variety 4 is K[Xi(a, u) 1 i l Z(cc, u), (CX, u) I? p] modulo the ideal gener- 

ated by all the polynomials arising from an insertion of the substitution equations into 

relations involving routes on p. In particular, this ideal will be nonzero whenever 

p makes a nontrivial appearance in a relation of A, in which case dim F$ < N(p). 

Consequently, isomorphism of l$ with A N(p) for all paths p does not allow for any 

nontrivial relations. Conversely, it is clear that l$ g AN(p) for all p when A is 

hereditary. 

Now suppose that A is hereditary. Since the quiver r is acyclic in this case, bi- 

jectivity of the maps Qp follows from part (III) of Theorem A. In view of the first 

part of the theorem, condition (i) is therefore equivalent to ‘N(p) = 0’ for all p, 

whence (i) implies (iii), the converse of this implication being trivial. But condition 

(ii) also translates into the nonexistence of detours on any path p in KT, that is, into 

the equality ‘N(p) = 0’ for all p. This completes the proof. 0 

5. Varieties of uniserials with fixed sequence of composition factors 

A more natural subdivision of the varieties of uniserial modules than that in terms of 

masts - the latter depending a priori on the given coordinatization of A - is in terms of 

sequences of consecutive composition factors. In order to understand the uniserials of 

composition length 1+ 1 with a fixed sequence (S( I), . . . , S( 1+ 1)) of simple composition 

factors, we need to first study the correlation among the varieties V,, where p runs 

through all paths of length 1 which pass precisely through the vertices e(l), . . , e(l+ l), 

in that order. In particular, we need to explore the intersections Qp( V,) n Qq( Y,), where 

p and q are two such paths. In a first easy step, we will observe that there is a 
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l-l correspondence between the detours on p and those on q which preserves the 

cardinalities of the corresponding index sets I(r, u). Hence, the varieties Vp and V, live 

in the same affine space A”. Let D = QP( Q) n $( V,) = Im(QP) f’Im(Q$). It turns out 

that the preimages Q;‘(D) and Qq-‘(D) are Zariski-open in V, and V,, respectively, 

and isomorphic. (We do not require varieties to be irreducible and correspondingly 

mean by an isomorphism between two varieties a homeomorphism which has regular 

coordinate functions in both directions.) In particular, the irreducible components of V, 

which intersect Vy and those of 4 which intersect I$ can be paired off into pairs of 

birationally equivalent partners. (Recall that, by Definition 8, an irreducible component 

W of Vp intersects G if @,,( W)nIm(@q) # 63.) The gist of this is that, if we are looking 

for a set of representatives of the birational equivalence classes of all the uniserial 

varieties of A-mod at the paths p running through the above sequence of vertices, we 

will not lose information in proceeding as follows: Let 41,. . . , qr be the distinct paths 

of length 1 passing through the sequence (e( 1), . , e( I + 1)). We start by determining 

the irreducible components of V,, Then we find the irreducible components W of V,, 

such that Qq2( W) n Im(@,, ) = 8, next the components W of F& with the property 

that Q4>( W) n (Im(@,, ) U Im( Qyz )) = 8, and so forth. Eventually, this procedure will 

lead us to a family of irreducible affine varieties which contains a representative of 

each birational equivalence class occurring among the irreducible components of the 

v,, 4 = q1>...,41. 

Lemma 11. Suppose that p and q ure paths of length 1 passing through the same 

sequence of vertices (e( 1 ), . . , e( I$- 1)) in the given order. Then there is a bijection p 

from the set of detours on p to the set ofdetours on q such that IZ(a,u)l = IZ(p(a,u))l 

for all detours (c(,u) 2~ p. In particular, ij 

N = c I~(=,u)l, 
(a,u)llp 

then & and G are both subvarieties qf afine N-space AN over K. 

Proof. It clearly suffices to focus on the case where p and q differ in precisely one 

arrow; an obvious induction will then complete the proof. Say p = CI[. . cc1 and q = 

!x/ . . C(r+lPrC(r-I .” ~1. Let p be the identity on those detours (y,~) on p for which 

either length u < r - 1, or else length u = Y - 1 and ;’ # by, and set p(/~‘,, CI,_ 1 . . al ) = 

( SI,., cc,_ 1 . . c(1) if y = /$.. Any detour of the form (y, z, . . . al ) on p with s > r, 

finally, we match up with the detour (7, CI,~ clril ljrar_, . . CL~) on q. It is easy to 

check that this bijection p preserves the cardinalities of the corresponding index sets as 

claimed. 0 

The proof of the following theorem meets with a few technical hurdles which will, 

however, cease to play a role in the further development of the subject. 

Theorem D Let p and q be paths oj’ length 1 passing through the same sequence of 

vertices, and let N be as in the preceding lemma. Moreover, consider the intersection 
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D = $( 5) n @J V,). Then the preimages @i’(D) and Qq-‘(D) in AN are isomorphic 

Zariski open subsets of‘ Pi and V,, respectively. 

More precisely, if p and q d$er in exactly s urrows, then there exist Zariski open 

subsets Z1 and Zz of the j&m Z; = A’\V(X,, . . .Xis) in AN such that Zl n 4 = 

Q;‘(D) and Z, n V, = $-l(D), together with an isomorphism II/ : ZI II V, + Zz n V, 

which makes the following diugram commutative: 

Proof. To construct an isomorphism $ : Q;‘(D) --f Qq-‘(D), we assume that D # 0. 

We start with a point k E Q;‘(D), and set U = $(k). Moreover, we let x E U be a 

top element such that, for each detour (y, U) on p, we have ~U.X = c, ki(>j, U)Vi(y, U)X. 

Then k is the family of coordinate vectors (ki(y,u))iEt(,,,, of the elements ~UX with 

respect to the basis (ui(r,u)_x), i ~Z(y,u), for the K-space U(y,u) = eJ’e”@h(u’+’ U, 

where e is the endpoint of 7. Let p(y, U) = (y’, u’) where p is as in Lemma 11; the 

lemma then allows us to assume that /(j,u’) = /(y,u). As we will see, the coor- 

dinate vector (ki(y’, u’))i E Q~~,~~) of the element y’u’x relative to the basis L’:(~‘,u’)x, 

i E I(y’,u’), for U(y, u) = U(y’,u’) does not depend on the choice of the element x 

as above. The assignment k H k’ = (k,‘(y’, u’));~,(;,‘,~‘),(;“,~‘)~/~ thus yields a well- 

defined map $ : @i’(D) + Qq- ‘(D) by the Corollary to Theorem A. Furthermore, we 

will find that the coordinates of tj are rational functions in the ki(y,u) which are de- 

fined on the whole domain and which depend only on p and q. In particular, this 

will show that the coordinate functions of $ are regular maps. Once this is estab- 

lished, it will readily follow that $ is an isomorphism from Q;‘(D) to Qq-‘(D). 

Indeed, if $’ : Qq-‘(D) ---f @; ‘(D) is the map constructed in complete analogy to 

$, then $’ has regular coordinate functions by symmetry, and it is straightforward 

to check that $‘$ and $II/’ are the identities on Q;‘(D) and di,-‘(D), 

respectively. 

As in the proof of Lemma 11, we will assume that p and q differ in precisely one 

arrow and leave the general case to the reader. Say 

p = c(/“‘s(I and q = r,...cl,+l~,.~+l ..xc~, 

where each ai is an arrow e(i) ---f e(i + 1) and /$ is an arrow e(r) --) e(r + 1). Set 

240 = Q-1 “‘C(‘. Clearly, we then have CD,-‘(D) = {k E Vp (kl(p,, uo) # 0} and 

Q,,-‘(D) = {k’E J$ ) k;( c(~, UO) # O}. where we have chosen our indices so that 

v’(,~,.,,uo) = CL,UO and v;(x,.,ua) = /$.uo. In other words, if Z’ = AN\V(X’(ljr,z.q))) 

and Z2 = AN\V(X~(~,,ug)), then Q;‘(D) = ZI n Vp and c$-‘(D) = Z2 n V,. 

To follow the strategy outlined above, we let (y,u) be a detour on p, and treat the 

following cases separately: 
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1. u = ua and y = fl,.. Then ($,u’) = (I,,uo). 

2. u = ug and y # fl,.. Then (y’,u’) = (y,u). 

3. length(u) < length(uo) = Y - 1. Then (y’,u’) = (y,u). 

4. length(u) > length(u0). If u = x, . . CII, then (;I’, u’) = (y, CC,. . . x,.+~~~uo). 

Throughout, assume that Z(y, u) is a set of natural numbers and that the paths vi(y, u) 

and vi(y’,u’) are ordered by length, that is, 

length ui(y, u) < length ~+i(y, u) 

for all i, and similarly for ($, u’); then, clearly, length vi(y,u) = length a:($, u’) for 

all i E f(y,u) = I(y’,u’). Again, let k E Q;‘(D) = ZI f’ 5, and identify $(k) with a 

uniserial module U having top element x such that Sux = C ki(6, u)q(d, v)x for each 

detour (6, a) on p. 

In case 1, we write each path u:(x,., ug) in the form uiflrun, where ui is a path of 

length 2 0; in particular, since ~‘,(a,, us) = P,.uo, we have ui = e(r + 1). We infer that 

vi(j$, us) = UiClrUO = uiui(&, UO) and compute 

Observing that, for i 2 1 and j 2 2, we have length(uiu&&.,uo)) > length(u,vi&uo)) 

= length(ui(/Luo)) and length(ui~,([L ua)) > length(vj(/31,uo)), we obtain 

for all i 2 1 and j > 2, where the (T,,, are polynomials in the k,(6, u), for detours (6, u) 

on p, which - aside from dependence on the indices - depend only on p, q and the 

detour considered. 

Inserting the second equality into the first yields 

a,uox = c k:(ar,uo)kl(Pr,uo) + C k,~(~r,uo)k~(Pr,uo)~sJi u,(pr,u~)X. 
Ql lG<l-I 

2<_J<’ 

On the other hand, cl,uox = 1 . tll(fi,., UO)X, and since the elements o~(/$,uo)x of U are 

K-linearly independent, a comparison of coefficients leads us to the system of equations 



B. Huisgen-Zimmermannl Journal of Pure and Applied Algebra 127 (1998) 39-72 65 

~~(G,~o)~I(B,,~o) = 1 and 

for i 2 2. This system for the ‘unknowns’ k:(cc,,ue) has size /I(/&,uo)/ x ]I(,!$,u~)] and 

is lower triangular, the scalar kr (/I,., us) holding all positions along the main diagonal of 

the coefficient matrix; this scalar is nonzero, because we chose k E Zt Consequently, 

the system is uniquely solvable for the &‘(a,,~), and the solution is of the form 

k/(G? uo) = r,l(k, (L uo)Y, where the ri are polynomials in the k,(&u) depending only 

on i, p, q and on the detour (a,, UO) on q, 

We will leave the details of cases 2,3 to the reader, but will carry out case 4. In 

that case, length u((y’, u’) = length ui(y, u) > length(u’) = length(u) > length(us), and 

hence u:( y’, u’) = U~&UO for some path ui of length 2 1, while vi(y, u) = U~C(,UO for all 

i E I(?‘, u’) = Z(g, 24). 

Again we compute y’u’x in two ways. On one hand, 

Here we use the facts that Z(y’,u’) = I(y,u) and that UiUr(~~,Uo) = U,C+UO = u$~,u). 

To evaluate the terms uiuj(i(81, UO)X for j 2 2, we observe that 

length(uioJ,&, ~0)) > length(u;ur(P,, ~0)) = length(uia,uo) = length(ui(y, u)) 

for all j 2 2. Thus, for j 2 2, we have uiUj(/I~,uo)x = Cs>i+l~ijS~s(~,~)~, where the 

aijS are again polynomials in the k,(6, v) depending solely on the indices, the paths p, 

q, and the detour (y,u). Inserting this information into the above equality yields 
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On the other hand, we can write II = WCI,U~ for a suitable path w of length > 0. 

Then u’ = w,$ua, and we obtain 

Now each of the paths ~WU~(/~,,UO) is longer than u and has the same endpoint as ‘/. 

Therefore 

where the ui(y, U) are suitable polynomials in the k,(6, v). This gives us 

and a comparison of coefficients of the K-linearly independent elements ~(7, u)x E U 

in equations (I), (II) once more yields a square system of equations for the k!($, u’). 

Again the coefficient matrix is lower triangular, and all diagonal positions are occu- 

pied by ki(P,,ua). Since ki(/!~.,ua) # 0 by the choice of k, the system has a unique 

solution, expressing the k!(y’,u’) as polynomials in the k,(&v) divided by powers of 

ki(P,,uo). 0 

Let WI,. . , W, be a full set of representatives for the birational equivalence classes 

of all the irreducible components occurring in the varieties I$, where p runs through 

the sequence of vertices (e( I), . . , e( 1+ 1)). Since, in particular, F$ is not birationally 

equivalent to I$ for i # j, Theorem D tells us that, for any choice of i # j and p # q 

with flc Vp and Wj C V,, the intersection $p( H$) n @J 4) is empty; in other words, 

among the irreducible varieties K selected above, any two corresponding to different 

masts are disjoint. We can therefore determine the set {WI,. , Wm} in the manner 

described in the beginning of the section. In particular, Theorem D guarantees that 

the result will not depend on the ordering of the paths ~1,. . . , pt; in other words, the 

set of birational equivalence classes obtained will be invariant under permutation of 

the pi. 

We interrupt the theory to give two examples. In each case, p and q are two paths 

of the same length passing through the same sequence of vertices. In the first exam- 

ple, 5 and V, are irreducible with a[,( l$,) n @J V,) # 0, but V, F q’y; Theorem D 

guarantees that 5 and l$ are birationally equivalent in that case. In the second, again 

Im( Vp) n Im( Vy) # 8, but this time V, is irreducible while & is not; in this situation, 

Theorem D guarantees that I$ is birationally equivalent to an irreducible component 

of v4. 
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Example 12. Let r be the quiver 

and A = KT/l, where I is generated by ,0’a’ - /k~. If p is equal to PC! or ,!?‘a’ and 

q to /?‘a or /ICC’, then V, = V(XrX2 - 1) is isomorphic to the punctured line, while 

5 = V(Xl - Xl) is isomorphic to the full affine line over K. Thus Vp F V,. Note, 

however, that @J Vp) n Qa( I$) # 0. 

Example 13. Let r be the quiver 

2’ B’ ./, f 
6’ 6’ 

1 E2 53 ‘4 :5 ‘6 a /i ., i ci F 

and ,I = KT/I, where I is the ideal generated by the relations 

E’6’ypX - c:~^I”~‘X’, &&$I’@. - &&@X’, 

r-:bj@ - r:iiygr’, &S’ypa - E’&$%. 

If p = ~fiyficr and q = E’~~/Yx, then 

vp = V(X,X, -X,X,X,, X, -X,, X3 -X1, x4 -X,)” V(Y2 -X3) 

is the standard cusp: 

In particular, I$ is irreducible. On the other hand, 

the latter component being isomorphic to the cusp from which the singular point has 

been deleted, or, in other words, isomorphic to the punctured line. Note that, in this 

case, still @+,( V,) n Qq( V,) # 0, but @J F$) n $( V(&,X5)) = 0. 

As repeatedly announced, the birational equivalence classes of the irreducible com- 

ponents of the varieties V,, where p runs through the paths of length 1 through a fixed 
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sequence (e( 1 ), . . , e(l + I )) of vertices, form an isomorphism invariant of the algebra 

/1. To see this, we will require a technical theorem which describes the behavior of 

the varieties I$, under change of coordinatization. The proof of this theorem constitutes 

a rather lengthy detour from our main train of thought; in particular, it is based on 

an extension of our conceptual framework. Therefore, it will be carried out separately 

in [S]. The statement of the theorem is as follows: 

Theorem E. Given are two coordinatizations of A, namely A = KT/I E KF/T, 

where the quiver r is based on the primitive idempotents el,. . ,e, as before, and 

? (necessarily isomorphic to r as a directed graph) is bused on primitive idempo- 

tents zl ,. . ,2,, of A, ordered in such a ‘cay that each ei is congruent, module J, to 

the image of 22i under our isomorphism. 

If p^ is a path of length 1 in K? passing through the sequence of vertices (z(l), . . , 

2(1+ 1)) then each irreducible component of VP is hirationally equivalent to a com- 

ponent of some variety V,, where p is a path of length 1 in KT passing through the 

sequence (e(l), . , e(l + 1)). Here Vi is the variety of p^ relutive to the coordinates 

? and 7, and Vp the variety of p relutive to r und I. 

Theorem F and Definition. Fix a sequence S = (S(l), . . . , S(1 + 1)) of simple left 

A-modules and let (e(l), . . . , e(1 + 1)) be th e corresponding canonical sequence of 

primitive idempotents in a,fixed coordinatization A = KT/I. Then the set of hirational 

equivalence classes of the irreducible components of the nonempty varieties &, where 

p runs through the paths of length 1 in KT passing through (e( 1 ), , e(1 + 1)) 

in that order, is independent of the coordinatization. In other words, the set Vs 

consisting of the irreducible components of the nonempty varieties l$, as above is 

uniquely determined by the isomorphism type of A, up to hirational equivalence. We 

denote by P’S the set of irreducible uniserial varieties of A at S. 

Moreover, zf VS = {WI,. , W,}, the uniserial genus of A at S is defined to be the 

maximum of the numbers genus( WI ), . , genus( W,, ), and is denoted by genus Vs. By 

the preceding paragraph, genus Vs is uniquely determined by the isomorphism class 

of A. 

An example of nontrivial uniserial genus can be found in Section 6 (Example 14). 

6. Realization of arbitrary varieties as varieties of uniserials 

The aim of this section is to show that each affine variety V is isomorphic to a 

variety of uniserial modules over a suitable finite dimensional algebra /1 = KT/Z, under 

the additional restrictions that r be acyclic and without double arrows. More precisely, 

we will realize our given variety V as a variety 5 for some path p in r. Let S be 

the sequence of simple modules corresponding to the consecutive vertices along p. 

Observe that, due to the absence of double arrows, Vs then consists precisely of the 
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irreducible components of V,. In other words, the set of irreducible components of an 

arbitrary variety V can be realized as a Vs. 

By Theorem A(III), the first of the above restrictions on r guarantees that QP is 

bijective, meaning that there is a l-l correspondence between the points of V, and 

the uniserial left /l-modules with mast p. The second condition on r ensures that all 

of the varieties Vy where q runs through the paths in KT, are actually isomorphism 

invariants of n [5]. In particular, our theorem thus provides a taste of the opulence 

and complexity of uniserial representations of finite dimensional algebras. 

Theorem G. Given a field K and any ajfine algebraic variety V over K, there exists 

a jinite dimensional path algebru module relations, A = KT/I, together with a path 

p in KT, such that V 2 I$,. We can, moreover, choose the quiver r to be acyclic and 

without double urrows. 

Proof. Say V = V(f). . . , f~ ), where the f; are polynomials in K[X, , . . ,X,] for some 

m 2 1. In a preliminary step, we construct an affine variety V’ isomorphic to V such 

that V’ is the vanishing set of polynomials f’ in a certain polynomial ring K[l’i;i] 

which have the property that none of the variables X, occurs in a power higher than 

1 in any monomial. 

To that end, let d; = rnaxrlJ5M degx((fj) for 1 < i <: m, and introduce new variables 

~II,~l2,...,~ld,,~21,~22,...,~2d~,...,~ml, . . ,Xmd,, For each s E { 1,. . ,hf}, construct 

a polynomial f,’ E K[X, ( 1 5 i < m, 1 5 j < di] as follows: Replace any monomial 
X;’ . . .X2 occurring nontrivially in fs by 

in K[X;j]; this is possible, since r, 5 d, for 1 5 i 5 m by construction. Clearly, the 

total degree of this new monomial in the X, is the same as that of X;’ . . .X2. Define 

V’= V(f/ ,..., j$, Xjs-XiU,,Il <i<m, 1 iS,t<d;). 

That V 2 V’ is then an obvious consequence of our construction, and hence we may 

assume, without loss of generality, that V = V’; in other words, we may assume that 

d, 2 1 for all i E { 1,. . , m}. This concludes the preliminary step. 

We now let r be the quiver 

and set p = P,,,a, . . . IJzcL~P~ CII To define suitable relations in KT, we write each fj 

in the form fj = C A E ,pcj(A)fli E AXi, where 9 is the power set of { 1,. . . , m} and 

ci(A) E K; this is possible by the preceding paragraph. For each A E 9, define a path 
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p(A) in KT as p(A) = p,(A). . p1 (A), where the pi(A) are defined by 

“/i 
ifiEA, 

pi(A) = 
plzi if i $! A. 

Note that each p(A) is a path from 1 to 2m + I. Let rj = CA E:P cj(A)p(A) for 

1 < j 5 IV, and observe that each Y, is a relation in KT. Finally, define A = KT/I, 

where I C KT is the ideal generated by t-1,. . , r,+f, and note that ZcL) = Z(2m+‘) = I is 

generated by the rj as a K-space. We now verify that V 2 f$ as follows. 

Clearly, there are no paths in KT starting in 1 which fail to be routes on p, and 

the detours on p are precisely the pairs (yi, pi-1 a;_, . .fl, xl) for 1 < i 5 m; here 

P~CQ stands for the primitive idempotent el identified with the vertex 1. Moreover, for 

each detour (y,u) on p, there exists precisely one right subpath u(y,u) = vl(y,u) of 

p longer than u and ending in the same vertex as ;‘, namely v(yi, pi_ixi_l . . ,O~CCI) = 

/3iai . . Plal. Writing Xi for the variable X1 (ri, fi;- 1 xi-1 . /Ilat), we thus obtain the 

substitution equations 

Inserting these successively into the relations Yj from the right yields, after at most m 

steps, the equations yj g ,f,(Xr,. ,X,)p, this being an immediate consequence of our 

construction. Therefore I$, = V(f; , . , Jij ) = V as desired. 0 

Note that the proof of Theorem G is constructive. We conclude by applying the 

pertinent algorithm to obtain an algebra with a uniserial variety of positive genus. 

Example 14. Let V = V(X,’ - X,(X: - 1)) be the elliptic curve with R-graph 

Introduce the new variables Xr I, X12, X13, X2,, X22 and note that the variety 

v’ = v(x2lx22 -~ll~l2~13 +x1,, XII -xl27 xl, -x13, x21 -x22> 
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is isomorphic to V. The following change of indexing makes it easier to follow the 

pattern described in the proof of Theorem F: 

v’ = v(x,x, -x,x,x, +x1, xl -x2, x, -x3, x4 -x5). 

Accordingly, we consider the quiver 

Let p = q5qdqjq2q1, where q, = /I&a, for 1 5 i 5 5, and define A = KTJI, where I is 

the ideal generated by the following relations: 

75y4q3q2q1 - q5q4?31i2Yl + q5q493q21/1> 95q4q392y1 - q5q4q3Y2qlT 

q5q4q3q2’/1 - q594Y3q291, q5y4q392q1 - Y5q4q392ql’ 

Then V, ” V’, as substantiated in the proof of the theorem. In particular, if S = 

(S(l),...,S(ll)), we obtain genusVs = 1. 

Remark. Note that, given an affine variety V, the K-dimension of the algebra n over 

which V is realized as a variety of uniserial modules increases steeply as the number 

of variables and their exponents in a description of V grow. Indeed, if r(m) is the 

quiver 

then dimK KT(m) = 9 . 2” - 3m - 8. If one renounces the requirement that the quiver 

r of the algebra realizing V be without double arrows, one can significantly curb 

the growth of this dimension in terms of the number of variables involved. Indeed, 

if one allows for double arrows, the role played by the quiver T(m) in the proof of 

Theorem G can be taken over by the quiver r’(m): 

Note that dimK KT’(m) grows less than half as fast as dimK KT(m), but still exponen- 

tially. 
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Note added in proof. In the meantime, the author and K. Bongartz have proved that 

the fibres of the maps at, are always isomorphic to full affine spaces A’ [work in 

progress]. 
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